跳到主要内容

不定积分笔记

· 阅读需 9 分钟
Versed_sine
Website Developer

+C\Huge{+C}+C\Huge{+C},还是 +C\Huge{+C}

不定积分难学?1h全面入门到精通!|学渣救星

积分表

积分表
kdx=kx+Cxadx=xa+1a+1+C(a1)1xdx=lnx+C11+x2dx=arctanx+C11x2dx=arcsinx+Caxdx=1lnaax+C(a>0,a1)cosxdx=sinx+Csinxdx=cosx+Csec2xdx=tanx+Ccsc2xdx=cotx+Csecxtanxdx=secx+Ccscxcotxdx=cscx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+Ctanxdx=lncosx+Ccotxdx=lnsinx+Cdxx2+a2=1aarctanxa+C(a>0)dxx2±a2=lnx+x2±a2+C(a>0)dxa2x2=arcsinxa+C(a>0)1a2x2dx=12alna+xax+C(a>0)\begin{align} \int k\,\mathrm{d}x=kx+C\\ \int x^a\,\mathrm{d}x=\dfrac{x^{a+1}}{a+1}+C(a\ne-1)\\ \int \dfrac{1}{x}\,\mathrm{d}x=\ln |x|+C\\ \int \dfrac{1}{1+x^2}\,\mathrm{d}x=\arctan x+C\\ \int \dfrac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\arcsin x+C\\ \int a^x\,\mathrm{d}x=\dfrac{1}{\ln a}a^x+C(a>0, a\ne 1)\\ \int \cos x\,\mathrm{d}x=\sin x+C\\ \int \sin x\,\mathrm{d}x=-\cos x+C\\ \int \sec^2 x\,\mathrm{d}x=\tan x+C\\ \int \csc^2 x\,\mathrm{d}x=-\cot x+C\\ \int \sec x\tan x\,\mathrm{d}x=\sec x+C\\ \int \csc x\cot x\,\mathrm{d}x=-\csc x+C\\ \int \sec x\,\mathrm{d}x=\ln|\sec x+\tan x|+C\\ \int \csc x\,\mathrm{d}x=\ln|\csc x-\cot x|+C\\ \int \tan x\,\mathrm{d}x=-\ln|\cos x|+C\\ \int \cot x\,\mathrm{d}x=\ln|\sin x|+C\\ \int \dfrac{\mathrm{d}x}{x^2+a^2}=\dfrac{1}{a}\arctan\dfrac{x}{a}+C(a>0)\\ \int \dfrac{\mathrm{d}x}{\sqrt{x^2\pm a^2}}=\ln|x+\sqrt{x^2\pm a^2}|+C(a>0)\\ \int \dfrac{\mathrm{d}x}{\sqrt{a^2-x^2}}=\arcsin\dfrac{x}{a}+C(a>0)\\ \int \dfrac{1}{a^2-x^2}\,\mathrm{d}x=\dfrac{1}{2a}\ln|\dfrac{a+x}{a-x}|+C(a>0) \end{align}

例题

1x4(x2+1)dx\displaystyle\int \dfrac{1}{x^4(x^2+1)}\,\mathrm{d}x

“分项”:抄分母,加一个减一个

I=(1+x2)x2x4(x2+1)dx=1x4dx1x2(x2+1)dx=1x4dx(1+x2)x2x2(x2+1)dx=1x4dx1x2dx+1x2+1dx=13x3+1x+arctanx+C\begin{aligned} I=&\int \dfrac{(1+x^2)-x^2}{x^4(x^2+1)}\,\mathrm{d}x\\ =&\int \dfrac{1}{x^4}\,\mathrm{d}x-\int \dfrac{1}{x^2(x^2+1)}\,\mathrm{d}x\\ =&\int \dfrac{1}{x^4}\,\mathrm{d}x-\int \dfrac{(1+x^2)-x^2}{x^2(x^2+1)}\,\mathrm{d}x\\ =&\int \dfrac{1}{x^4}\,\mathrm{d}x-\int \dfrac{1}{x^2}\,\mathrm{d}x+\int \dfrac{1}{x^2+1}\,\mathrm{d}x\\ =&-\dfrac{1}{3}x^{-3}+\dfrac{1}{x}+\arctan x+C \end{aligned}
tan2dx\displaystyle\int \tan^2\,\mathrm{d}x

sin2x+cos2x=1tan2+1=sec2\sin^2 x+\cos^2 x=1\Rightarrow\tan^2+1=\sec^2

I=(sec2x1)dx=tanxx+CI=\displaystyle\int (\sec^2 x-1)\,\mathrm{d}x=\tan x-x+C

cos2x2dx\displaystyle\int \cos^2\dfrac{x}{2}\,\mathrm{d}x
I=1+cosx2dx=12dx+12cosxdx=12x+12sinx+C\begin{aligned} I=&\int \dfrac{1+\cos x}{2}\,\mathrm{d}x\\ =&\int \dfrac{1}{2}\,\mathrm{d}x+\dfrac{1}{2}\int \cos x\,\mathrm{d}x\\ =&\dfrac{1}{2}x+\dfrac{1}{2}\sin x+C \end{aligned}

第一类换元积分法

定义

第一类换元积分法定义

f(u)du\displaystyle \int f(u)\,\mathrm{d}u=F(u)+C,且, 且 u=\varphi(x)$ 可导,则由复合函数微分法和不定积分定义由有

f[φ(x)]φ(x)dx=f[φ(x)]dφ(x)=令 u=φ(x)f(u)du=F(u)+C=F[φ(x)]+C\int f[\varphi(x)]\varphi'(x)\,\mathrm{d}x=\int f[\varphi(x)]\,\mathrm{d}\varphi(x)\xlongequal{令\ u=\varphi(x)}\int f(u)\,\mathrm{d}u=F(u)+C=F[\varphi(x)]+C

例题

ln2xxdx\displaystyle \int \frac{\ln^2 x}{x}\,\mathrm{d}x
I=ln2x1xdx=ln2xdlnx=13ln3x+CI=\int \ln^2 x\cdot\dfrac{1}{x}\,\mathrm{d}x=\int \ln^2 x\,\mathrm{d}\ln x=\dfrac{1}{3}\ln^3 x+C
tanxdx\displaystyle \int \tan x\,\mathrm{d}x
I=sinxcosxdx=1cosxdcosx=lncosx+CI=\int \dfrac{\sin x}{\cos x}\,\mathrm{d}x=-\int \dfrac{1}{\cos x}\,\mathrm{d}\cos x=-\ln|\cos x|+C
1a2x2dx(a>0)\displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x(a>0)
11x2dx=arcsinx+C\int \dfrac{1}{\sqrt{1-x^2}}\,\mathrm{d}x=\arcsin x+C
I=1a2[1(xa)2]dx=11(xa)2d(xa)=arcsinxa+CI=\int \dfrac{1}{\sqrt{a^2\left[1-\left(\frac{x}{a}\right)^2\right]}}\,\mathrm{d}x=\int \dfrac{1}{\sqrt{1-\left(\frac{x}{a}\right)^2}}\,\mathrm{d}\left(\dfrac{x}{a}\right)=\arcsin \dfrac{x}{a}+C
dxx(1+x)\displaystyle \int \dfrac{\mathrm{d}x}{\sqrt{x}(1+x)}
提示
dx=(x)dx=12xdx1xdx=2dx\mathrm{d}\sqrt{x}=\left(\sqrt{x}\right)'\mathrm{d}x=\dfrac{1}{2\sqrt{x}}\mathrm{d}x\Rightarrow\dfrac{1}{\sqrt{x}}\mathrm{d}x=2\mathrm{d}\sqrt{x}
11+x2dx=arctanx+C\int \dfrac{1}{1+x^2}\,\mathrm{d}x=\arctan x+C
I=211+(x)2dx=2arctanx+CI=2 \int \dfrac{1}{1+\left(\sqrt{x}\right)^2}\,\mathrm{d}\sqrt{x}=2\arctan\sqrt{x}+C

第二类换元积分

定义

第二类换元积分定义

适当地选择变量代换 x=ψ(t)x=\psi(t),将积分 f(x)dx\displaystyle \int f(x)\,\mathrm{d}x 化为积分 f[ψ(t)]ψ(t)dt\displaystyle \int f[\psi(t)]\psi'(t)\,\mathrm{d}t,换元公式可表达为 f(x)dx=f[ψ(t)]ψ(t)dt\displaystyle \int f(x)\,\mathrm{d}x=\displaystyle \int f[\psi(t)]\psi'(t)\,\mathrm{d}t,其中,x=ψ(t)x=\psi(t) 是单调可导的函数且 ψ(t)0\psi'(t)\ne 0,确保存在反函数 t=ψ1(x)t=\psi^{-1}(x)

常见的几种换元法

三角代换

被积函数含 a2x2(a>0)\sqrt{a^2-x^2}(a>0),令 x=asint,t[π2,π2]x=a\sin t, t\in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right],则 a2x2=acost\sqrt{a^2-x^2}=a\cos t

被积函数含 x2+a2(a>0)\sqrt{x^2+a^2}(a>0),令 x=atant,t(π2,π2)x=a\tan t, t\in\left(-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right),则 x2+a2=asect\sqrt{x^2+a^2}=a\sec t

被积函数含 x2a2(a>0)\sqrt{x^2-a^2}(a>0),令 x=asect,t[0,π2)(π2,π]x=a\sec t, t\in\left[0, \dfrac{\pi}{2}\right)\cup\left(\dfrac{\pi}{2}, \pi\right],则 x2a2=atant\sqrt{x^2-a^2}=a|\tan t|

例题

dx1+x\displaystyle \int \dfrac{\mathrm{d}x}{1+\sqrt{x}}
I=即 x=t2令 t=x>0dt21+t=2tdt1+t=2t1+tdt=2(t+1)11+tdt=2[1dt11+tdt]=2[1dt11+td(t+1)]=2[tln(t+1)]+C=2x2ln(x+1)+C\begin{aligned} I\xlongequal[即\ x=t^2]{令\ t=\sqrt{x}>0}&\int \dfrac{\mathrm{d}t^2}{1+t}=\int \dfrac{2t\mathrm{d}t}{1+t}\\ =&2 \int \dfrac{t}{1+t}\,\mathrm{d}t=2 \int \dfrac{(t+1)-1}{1+t}\,\mathrm{d}t\\ =&2\left[\int 1\,\mathrm{d}t-\int \dfrac{1}{1+t}\,\mathrm{d}t\right]\\ =&2\left[\int 1\,\mathrm{d}t-\int \dfrac{1}{1+t}\,\mathrm{d}(t+1)\right]\\ =&2[t-\ln(t+1)]+C\\ =&2\sqrt{x}-2\ln(\sqrt{x}+1)+C \end{aligned}
dx(x2+1)32\displaystyle \int \dfrac{\mathrm{d}x}{\left(x^2+1\right)^{\frac{3}{2}}}
I=即 dx=sec2tdt令 x=tant(t(π/2,π/2))sec2tdtsec3t=costdt=sint+C=xx2+1+CI\xlongequal[即\ \mathrm{d}x=\sec^2 t\mathrm{d}t]{令\ x=\tan t(t\in\left(-\pi/2, \pi/2\right))}\int \dfrac{\sec^2 t\,\mathrm{d}t}{|\sec^3 t|}=\int \cos t\,\mathrm{d}t=\sin t+C=\dfrac{x}{\sqrt{x^2+1}}+C

分部积分法

定义

分部积分法

u(x),v(x)u(x), v(x) 均有连续的导数,则

u(x)dv(x)=u(x)v(x)v(x)du(x)\int u(x)\,\mathrm{d}v(x)=u(x)v(x)-\int v(x)\,\mathrm{d}u(x)

要恰当地选择 uudv\mathrm{d}v,即求 udv\displaystyle \int u\,\mathrm{d}v 比较困难,而求 vdu\displaystyle \int v\,\mathrm{d}u 比较容易,一般可以依次选取 uu 的顺序为——反三角函数、对数函数、幂函数、指数函数、三角函数(即“反对幂指三”),即

xa{exlnx三角反三角dx{将 ex、三角函数放在 d 后而 lnx、反三角函数留在 d 前\int x^a \begin{cases} e^x\\ \ln x\\ 三角\\ 反三角 \end{cases}\,\mathrm{d}x \longrightarrow \begin{cases} 将\ e^x、三角函数放在\ \mathrm{d}\ 后\\ 而\ \ln x、反三角函数留在\ \mathrm{d}\ 前 \end{cases}

:::

例题

arctanxdx\displaystyle \int \arctan x\,\mathrm{d}x
I=xarctanxxdarctanx=xarctanxx11+x2dx=xarctanx1211+x2d(x2+1)=xarctanx12ln(1+x2)+C\begin{aligned} I=&x\arctan x-\int x\,\mathrm{d}\arctan x\\ =&x\arctan x-\int x\cdot\dfrac{1}{1+x^2}\,\mathrm{d}x\\ =&x\arctan x-\dfrac{1}{2}\int\dfrac{1}{1+x^2}\,\mathrm{d}(x^2+1)\\ =&x\arctan x-\dfrac{1}{2}\ln(1+x^2)+C \end{aligned}
x2lnxdx\displaystyle \int x^2\ln x\,\mathrm{d}x
I=13lnxdx3=13(lnxx3x3dlnx)=13(x3lnxx31xdx)=13(x3lnx13x3)+C\begin{aligned} I=&\dfrac{1}{3}\int \ln x\,\mathrm{d}x^3\\ =&\dfrac{1}{3}\left(\ln x\cdot x^3-\int x^3\,\mathrm{d}\ln x\right)\\ =&\dfrac{1}{3}\left(x^3\cdot\ln x-\int x^3\cdot\dfrac{1}{x}\,\mathrm{d}x\right)\\ =&\dfrac{1}{3}\left(x^3\cdot\ln x-\dfrac{1}{3}x^3\right)\\+C \end{aligned}
xex(x+1)2dx\displaystyle \int \dfrac{xe^x}{(x+1)^2}\,\mathrm{d}x
提示
1u2dud1u-\dfrac{1}{u^2}\mathrm{d}u\mathrm{d}\dfrac{1}{u}
I=(x+1)1(x+1)2exdx=exx+1dxex(x+1)2d(x+1)=exx+1dx+exd1x+1=exx+1dx+ex1x+1exx+1dx=exx+1+C\begin{aligned} I=&\int \dfrac{(x+1)-1}{(x+1)^2}e^x\,\mathrm{d}x\\ =&\int \dfrac{e^x}{x+1}\,\mathrm{d}x-\int \dfrac{e^x}{(x+1)^2}\,\mathrm{d}(x+1)\\ =&\int \dfrac{e^x}{x+1}\,\mathrm{d}x+\int e^x\,\mathrm{d}\dfrac{1}{x+1}\\ =&\int \dfrac{e^x}{x+1}\,\mathrm{d}x+e^x\cdot\dfrac{1}{x+1}-\int \dfrac{e^x}{x+1}\,\mathrm{d}x\\ =&\dfrac{e^x}{x+1}+C \end{aligned}

原函数存在定理

原函数存在定理

f(x)f(x) 在区间 II 上连续,则 f(x)f(x) 在区间 II 上一定存在原函数 F(x)F(x).

初等函数的原函数不一定是初等函数,例如 sin(x2)dx,sinxxdx,cosxxdx.dxlnx,ex2dx\displaystyle \int \sin(x^2)\,\mathrm{d}x, \displaystyle \int \dfrac{\sin x}{x}\,\mathrm{d}x, \displaystyle \int \dfrac{\cos x}{x}\,\mathrm{d}x. \displaystyle \int \dfrac{\mathrm{d}x}{\ln x}, \displaystyle \int e^{-x^2}\,\mathrm{d}x 等被积函数有原函数,但不能用初等函数表示,即“积不出”